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Advancing computer-generated holographic
display thanks to diffraction model-driven
deep nets
Vittorio Bianco and Pietro Ferraro*

Advancements are reported in computer-generated holography proofing RGB 4K display through a new strategy based
on diffraction model-driven deep networks. In the new 4K-DMDNet, the network is not a “black box” anymore. Rather, the
input-output relation must obey to the physics of wavefront propagation, which is embedded here as a constraint. Thus, a
labelled dataset is not required, and the model shows superior generalization capabilities with respect to data-driven ap-
proaches. The method is promising for the new generation of RGB 4K holographic display, as well as augmented and vir-
tual reality systems.
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Since its first introduction, holography has raised the fas-
cinated attention of a broad audience, spanning from the
research  community  to  the  general  public.  The  promise
to  encode  a  complex  wavefront  into  a  2D  holographic
pattern,  and  to  recreate  from  them  3D  image  display  is
intriguing.  In  fact,  important  applications  of  such  3D
holographic  display  can  be  foreseen,  e.  g.  telepresence,
cultural heritage  fruition,  surgery  training,  entertain-
ment, as well as the development of next generation tools
for  gathering  new  insights  in  biology  and  medicine
through augmented and Virtual Reality (VR)1−4.

Within the  framework  of  holographic  display,  Com-
puter  Generated  Hologram  (CGH)3,5 technology  offers
the  possibility  to  skip  the  interferometric  recording,
since in theory any photograph of a real-world object can
be converted into its hologram. In analogy to the classic-
al  holographic  reconstructions  of  patterns  registered
onto  a  photographic  plate,  the  CGH  is  sent  to  a  Spatial
Light  Modulator  (SLM)  that  manipulates  the  incoming

light according to the input and thus can optically recon-
struct and display the image of the 3D object in sharp fo-
cus.  Similarly,  video sequences  of  images  can be  sent  to
the SLM in order to create optically displayed 3D videos.

However, limitations  in  the  SLM  and  CGH  techno-
logy have risked to hamper the enthusiasm around such
applications. Existing SLMs can modulate the amplitude
or the  phase  of  the  impinging  light.  Phase-Only  Holo-
grams (POHs) are typically sent to phase-only SLMs, be-
ing  preferred  to  amplitude-only  holograms  due  to  the
higher diffraction efficiency and elimination of  the twin
image. However,  converting  an  image  into  the  corres-
ponding POHs is  an ill-posed inverse  problem. Existing
algorithms to estimate the POH are based on the Gerch-
berg-Saxton (GS)6, Wirtinger7, and non-convex optimiz-
ation schemes8, which are iterative, time consuming and
typically  converge  only  to  local  optima.  As  a  result,  the
quality  of  optical  display,  in  terms  of  artifacts,  speckle
noise,  contrast,  and  reproduction  times,  is  way  too  far 
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from the  expectations  of  the  general  public  for  a  wide-
spread use.

Data-driven deep  neural  networks  have  been  em-
ployed to solve the iterative POH estimation problem in
real  time  and  to  achieve  speckle-free  holographic
display2.  The  network  is  trained  to  learn  the  non-linear
mapping between the input images and the POH estim-
ate using a labelled dataset. In this approach, the ground-
truth is generated by employing the above-mentioned it-
erative  solvers.  The  loss  function  is  calculated  between
the  network  output  and  the  iterative  solution,  which  is
used  to  update  the  weights  of  the  network.  Data-driven
deep  learning  requires  a  large  amount  of  labelled  data
and, above all, is intrinsically limited by the quality of the
ground-truth.  In  other  words,  a  network that  learns  the
input-output link  from  the  ground-truth  estimate  can-
not perform better than the estimated data.

Researchers led by Prof. Liangcai Cao, propose a nov-
el  pathway  to  overcome  the  limitations  associated  with
data-driven methods. Their approach relied on a model-
driven  deep  learning  strategy  to  achieve  4K  real-time
RGB  holographic  display  with  unprecedented  quality9.
Instead of  using  a  labelled  dataset,  the  physical  diffrac-
tion  model  is  enforced  in  the  network  as  a  constraint.
Fresnel  diffraction is  used as a model for simulating the
propagation of the light field from the hologram plane to
the object best focus plane, a process that is fully embed-
ded in the network and is carried out during the training.
During the training stage, a set of RGB images is sent to
the network, which generates for each of them the POHs
corresponding to the R, G and B channels. The POHs are
propagated using the Fresnel model to the object best fo-
cus  plane  to  generate  a  guess  of  the  input  image.  Input
image and the guess at the network output are compared
to calculate  a  loss  function  (Negative  Pearson  Correla-
tion Coefficient, NPCC) and update the weights.

The problem solved by the network is summarized by
the authors in the elegant formula: 

find H
s.t. |Prop (H)|2 = I,

where H is the POH to be estimated, I is the input image,
and Prop denotes the Fresnel propagation from the holo-
gram  to  the  object  best-focus  plane.  After  training,  the
weights  are  “frozen”  and  the  network  is  able  to  predict
the POHs from the intensity images.

In  this  way,  they  surpass  the  common  perception  of
networks as “black boxes” by achieving a larger general-
ization capability, since the network learns from physic-
al constraints rather than data examples.

In their experiments,  the three R, G, and B POHs are
sent  to  a  phase-only  SLM  (3840×2160  pixels,  with  3.74
μm  pixel  pitch)  in  turn,  and  accordingly  lasers  at
wavelengths  638  nm,  520  nm,  450  nm  are  sequentially
switched on,  so  that  the  three  colour  channels  are  rap-
idly  optically  displayed.  The  switching  period  can  be
made  shorter  than  the  human  eye  integration  time,  so
that  the  time  multiplexing  process  is  perceived  by  the
human eyes as an RGB optical display.

Previous  works  addressed  the  POH  generation  issue
using  model-driven  deep  learning10−12.  Camera  in  the
loop (CITL) strategies10 and Phase Dual Resolution Net-
work (PDRNet)12 are  good examples  in  this  sense.  Prof.
Cao’s group also developed in a previous work the Holo-
Encoder13, a model-driven network able to provide single
wavelength  POHs  with  very  fast  inference  time.  All  the
model-driven networks  proposed  so  far  exhibited  lim-
ited phase convergence though.

One  of  the  key-enabling  ideas  behind  the  research  of
Cao’s group is that limited convergence should be traced
back  to  insufficient  constraints  of  the  inverse  problem9.
In their work, the constraint of the reconstructed images
is empowered in the frequency domain, in particular by
zero-padding the spectrum9,14 and thus oversampling the
phase in  the  spatial  domain.  The  oversampling  opera-
tion is  directly added in the network pipeline that  emu-
lates the process of Fresnel propagation9.

Another important distinctive feature of their work is
the introduction of the sub-pixel convolution method as
a way to extend the number of  learnable parameters, N,
which is a sort of meter to identify the learning capability
of network models (Fig.1). The conventional way to aug-
ment N is  to  increase  the  network  depth  at  the  cost  of
slower  convergence,  higher  computational  burden,
longer training times, and more demanding hardware re-
quired.  The  proposed  network  model  is  a  U-Net  CNN
consisting  of  a  downsampling  path  and  an  upsampling
path.  Sub-pixel  convolution  extends N of  the  network
upsampling  path  of  a  fourfold  factor  without  extending
the network depth, which is an important breakthrough to
retrieve high-fidelity  POH  reconstructions  with  fast  in-
ference.  Authors  demonstrated  that  the  new  sub-pixel
convolution  outperforms  the  conventional  upsampling
methods, i.e.  transposed convolution and nearest neigh-
bor resize convolution, in terms of Peak Signal-to-Noise
Ratio  (PSNR),  obtaining  the  remarkable  PSNR=19.27
dB9.

Authors  benchmarked  the  new  4K-DMDNet  using
full-color  numerical  simulations  and  testing  the  optical
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projection  rendering.  As  for  the  numerical  simulations,
the  4K-DMDNet  greatly  outperformed  the  outcomes  of
both traditional GS and the Holo-Encoder. It was able to
suppress  artifacts  and  reject  speckle  noise,  providing
POHs with PSNR=20.49 dB in only 0.26 s. It also outper-
formed  GS  and  Holo-Encoder  in  optical  projections,
showing  excellent  quality  RGB  4K  projection  onto  a
camera at  0.3  m  distance.  The  model-driven  unsuper-
vised approach  intrinsically  allowed  better  generaliza-
tion, thus  authors  proved  the  successful  optical  projec-
tion  of  a  binary  pattern  very  different  from  the  typical
training images.  And last  but not least,  the ability to re-
construct 3D scenes with objects at different focus planes
is  demonstrated  by  the  authors.  In  all  cases  projections
look  natural,  artifact-free  and  speckle-free,  which  is  an
essential  requirement  to  unlock  holographic  display  for
use by a broad audience.

For  the  future,  we  can  expect  the  use  of  this  novel
technology  for  head-up  displays  in  portable  augmented
and virtual  reality  apparatus,  new  generation  3D  holo-
graphic  display  that  surpasses  the  current  state  of  the
art1,  and  also  for  helping  lab  technicians  in  metalenses
design and additive manufacturing, as claimed by the au-
thors.  Further  interesting  developments  are  foreseeable,
e.g.  replacing  the  U-Net  with  updated  models  such  as
generative adversarial networks or graph neural networks.

References
 Zhang CL,  Zhang DF,  Bian  ZP.  Dynamic  full-color  digital  holo-
graphic  3D  display  on  single  DMD. Opto-Electron  Adv 4,

1.

200049 (2021).
 Shi  L,  Li  BC,  Kim  C  et  al.  Towards  real-time  photorealistic  3D
holography  with  deep  neural  networks. Nature 591,  234–239
(2021).

2.

 He ZH, Sui XM, Jin GF et al. Progress in virtual reality and aug-
mented  reality  based  on  holographic  display. Appl  Opt 58,
A74–A81 (2019).

3.

 Bianco V,  D'Agostino M, Pirone D et  al.  Label‐ free intracellu-
lar  multi‐ specificity  in  yeast  cells  by  phase‐ contrast tomo-
graphic flow cytometry. Small Methods 7 (2023).

4.

 Sahin  E,  Stoykova  E,  Mäkinen  J  et  al.  Computer-generated
holograms for 3D imaging: a survey. ACM Comput Surv 53, 32
(2021).

5.

 Gerchberg  RW.  A  practical  algorithm  for  the  determination  of
phase  from  image  and  diffraction  plane  pictures. Optik 35,
237–246 (1972).

6.

 Chakravarthula P, Peng YF, Kollin J et al. Wirtinger holography
for near-eye displays. ACM Trans Graph 38, 213 (2019).

7.

 Zhang  JZ,  Pégard  N,  Zhong  JS  et  al.  3D  computer-generated
holography  by  non-convex  optimization. Optica 4,  1306–1313
(2017).

8.

 Liu KX, Wu JC, He ZH et al. 4K-DMDNet: diffraction model-driv-
en  network  for  4K  computer-generated  holography. Opto-Elec-
tron Adv 6, 220135 (2023).

9.

 Peng YF, Choi S, Kim J et al. Speckle-free holography with par-
tially  coherent  light  sources and camera-in-the-loop calibration.
Sci Adv 7, eabg5040 (2021).

10.

 Ishii Y, Shimobaba T, Blinder D et al. Optimization of phase-only
holograms calculated with scaled diffraction calculation through
deep neural networks. Appl Phys B 128, 22 (2022).

11.

 Yu T, Zhang SJ, Chen W et al. Phase dual-resolution networks
for  a  computer-generated  hologram. Opt  Express 30,
2378–2389 (2022).

12.

 Wu JC,  Liu  KX,  Sui  XM et  al.  High-speed computer-generated
holography  using  an  autoencoder-based  deep  neural  network.
Opt Lett 46, 2908–2911 (2021).

13.

 Ferraro P, De Nicola S, Coppola G et al. Controlling image size
as  a  function  of  distance  and  wavelength  in  Fresnel-transform
reconstruction  of  digital  holograms. Opt  Lett 29,  854–856
(2004).

14.

Scan for Article PDF

 

Fig. 1 | Conceptual scheme of the generation and reconstruction process of 4K POHs by the 4KDMDNet.
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